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• Systems are able to perform extremely well in 
making predictions in high-dimensional settings. 

• In particular, there has been huge progress in 
the fields of natural language processing, 
computer vision, and reinforcement learning. 
• Applications are everywhere, from medicine to 

business, agriculture to space exploration.

Recent Breakthroughs in AI
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making predictions in high-dimensional settings.  

• In particular, there has been huge progress in 
the fields of natural language processing, 
computer vision, and reinforcement learning.  
• Applications are everywhere, from medicine to 

business, agriculture to space exploration.

Recent Breakthroughs in AI
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That’s so awesome!!



Does this mean we are done?

4

"
If not, what is missing? 

(Assuming infinite compute & data.) 



Current Challenges in AI
• There are still serious foundational issues.
• Current AI systems suffer from: 

1. Lack of explainability capabilities 
2. Unfair & unethical decision-making
3. Data inefficiency
4. Poor generalizability 
5. Lack of controllability 

• Those are thorny, long-standing problems. 
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Current Challenges in AI
• There are still serious foundational issues. 
• Current AI systems suffer from:  

1. Lack of explainability capabilities  
2. Unfair & unethical decision-making 
3. Data inefficiency 
4. Poor generalizability  
5. Lack of controllability  

• Those are thorny, long-standing problems.  
• Do these problems have anything in common?

5

At the core of these challenges is the 
absence of a robust causal understanding.

#EB: $



Towards a Science 
 of Artificial Intelligence 
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Idea: Model agent-environment  
relationship through causal language!

real world agent

“What we want is a machine that can  
learn from experience." ---Alan Turing, 1947
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Idea: Model agent-environment  
relationship through causal language!

real world agent

see do imagine

“What we want is a machine that can  
learn from experience." ---Alan Turing, 1947

Pearl Causal Hierarchy 
EB: unpacking   

Turing’s ‘experiencie’: 



Causal Model → Pearl Causal Hierarchy 

Level (Symbol)
Typical  
Activity

Typical  
 Question

Examples

1 Associational 
 P(y | x) 

Seeing What is? 
How would 
seeing X change 
my belief in Y? 

What does a 
symptom tell us 
about the 
disease?

2 Interventional 
 P(y | do(x), c)

Doing What if? 
What if I do X? 

What if I take 
aspirin, will my 
headache be 
cured?

3 Counterfactual 
P(yx | x’, y’) 

Imagining,  
Retrospection

Why?  
What if I had 
acted differently?

Was it the 
aspirin that 
stopped my 
headache?

ML - (Un)Supervised 

ML - Reinforcement 

Structural Causal Model

8

%

&

' (Bayes Net, DTree, 
 SVM, DNN, …)

(Causal Bayes Net, 
MDPs, POMDPs)

[ Pearl & Mackenzie, 2018; Bareinboim, Correa, Ibeling, Icard 2022]
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%

&

' (Bayes Net, DTree, 
 SVM, DNN, …)

(Causal Bayes Net, 
MDPs, POMDPs)

[ Pearl & Mackenzie, 2018; Bareinboim, Correa, Ibeling, Icard 2022]

The formalization of the PCH provides a 
way to measure the capabilities 

(expressiveness) of different formalisms 
w.r.t. increasingly complex queries 

 (see also causal hierarchy theorem).



MOVING BEYOND TRADITIONAL ML 

Level (Symbol)
Typical  
Activity

Typical  
 Question

Examples

1 Associational 
 P(y | x) 

Seeing What is? 
How would 
seeing X change 
my belief in Y? 

What does a 
symptom tell us 
about the 
disease?

2 Interventional 
 P(y | do(x), c)

Doing What if? 
What if I do X? 

What if I take 
aspirin, will my 
headache be 
cured?

9

&

'

Research Question.  
How to use the data collected from 

observations (layer 1) to answer 
questions about interventions (layer 2)?

Input: 
(data) 

Seeing 

Output: 
(query) 

Doing 

most of the available data 
is observational, 

passively collected

most of the inferences are 
about causal effects 

(policies, treatments, decisions)

  Cross-layer inferences:  (
[ Pearl & Mackenzie, 2018; Bareinboim et al., 2022]



Challenge: Causal Generative Models 
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L2 : P(V ∣ do(x))

Interventions

L3 : P(Vx ∣ x′ )

Counterfactuals
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(Unobserved Nature)

Causal 
Model ℳ*

Unobserved

Training =  
Use L1-data

to learn ̂M

PC
H PCH?

L1 : P(V)

Observations

L2 : P(V ∣ do(x))

Interventions

L3 : P(Vx ∣ x′ )

Counterfactuals

L3 : P(Vx ∣ x′ ) L1 : P(V) L2 : P(V ∣ do(x))
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L3 : P(Vx ∣ x′ )

Fundamental problem of generative AI.  

Under what conditions inferences in  (r.h.s.) 
are valid, i.e., when do they recover the 
distributions induced by the true  (l.h.s.)?

M̂

M*
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Under what conditions inferences in  (r.h.s.) 
are valid, i.e., when do they recover the 
distributions induced by the true  (l.h.s.)?

M̂

M*

?



Causal Artificial Intelligence

Goal: Develop more general AI systems 
endowed with the following capabilities:

1. Causal Understanding & Explanations
2. Efficient & Precise Decision-Making 
3. Generalizable & Robust Inferences
4. Causal & Counterfactual Generation 
5. Model Learning & Discovery 

11
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Example 1: US Census 2018

W

X Y

Z

Gender Salary

Education, Employment

Age, Nationality • The data science team observes that  
 

 

This disparity could be explained in 
different ways, i.e.,


TV = E[Y ∣ male] − E[Y ∣ female]

After a legal argument, the jury may be okay with Y’s variations due 
to education, but not okay with the variations due to gender or age.

How to disentangle the variations within TV? 

[fairness.causalai.net]

(1) The salary decision is based on 
employee’ gender: . 
 
(2) Decisions were based on education or 
employment: .  
 
(3) Age or nationality are used to infer the 
person’s gender: .

X → Y

X → W → Y

X ↔ Z → Y

http://fairness.causalai.net
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US Census 2018 
— Causal Analysis

• Observed Disparity (data):  
• TVx0, x1(y) = $14,000/year

W

X Y

Z

Gender Salary

Education, Employment

Age, Nationality

[fairness.causalai.net]

http://fairness.causalai.net
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US Census 2018 
— Causal Analysis

• Observed Disparity (data):  
• TVx0, x1(y) = $14,000/year

W

X Y

Z

Gender Salary

Education, Employment

Age, Nationality

TV cannot distinguish causally 
different explanations!

[fairness.causalai.net]

http://fairness.causalai.net
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Example 2: College Admissions
• A university in the US admits applicants every year. The data science 

team is tasked with quantifying discrimination in the admission process 
and tracking it over time, between 2010 and 2020. The data-generating 
process changes over time and can be described as follows.  
Let  denote gender (  female,  male). Let  be the age at the time of 
application (  under 20 years,  over 20 years), and let  
denote the department of application (  for arts & humanities, 

 for sciences). Finally, let  denote the admission decision.

X x0 x1 Z
Z = 0 Z = 1 W

W = 0
W = 1 Y

X ← 1(UX < 0.5 + 0.1UXZ)
Z ← 1(UZ < 0.5 + κ(t)UXZ)

W ← 1(UW < 0.5 + λ(t)X )
Y ← 1(UY < 0.1 + α(t)X + β(t)W + 0.1Z )

UXZ ∈ {0,1}, P(UXZ = 1) = 0.5,
UX, UZ, UW, UY ∼ Unif[0,1] .

SCM M = ⟨ℱt, Pt(U)⟩

κ(t + 1) = 0.9κ(t)
λ(t + 1) = λ(t)(1 − β(t))
β(t + 1) = β(t)(1 − λ(t))f (t),

f (t) ∼ Unif[0.8,1.2]
α(t + 1) = 0.8α(t)

Time Evolution  θt→t+1
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Bias Quantification over time



Causal AI — Desiderata 

The new generation of AI systems is   
expected to provide the following capabilities: 

1. Causal Understanding & Explanations 
2. Efficient & Precise Decision-Making  
3. Generalizable & Robust Inferences 
4. Causal Generative Capabilities  
5. Model Learning & Discovery 

16

 



Agent 
Θ, G

Environment 
M

context / state

‘action’

reward

Causal Diagram Structural Causal Model

17
observational, interventional, counterfactual

17

Causal RL - Big Picture
[crl.causalai.net]
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17
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17

Causal RL - Big Picture
[crl.causalai.net]

          Two key observations (RL → CRL):   
1. The environment and the agent are tied  
   through the pair SCM M & causal graph G. 
2. We defined different types of “actions”, or 
    interactions, to avoid ambiguity (thr. PCH).

           As formally defined by  
      (1) the pair <M, G>, and (2) the PCH.

http://fairness.causalai.net


CRL NEW CHALLENGES 
& OPPORTUNITIES (I)

Task 1 
 Causal Offline to Online Learning (COOL) 
 (generalized policy learning) 

18

)

%

(NeurIPS’19, ICML’20, NeurIPS’21, ICML’22, UAI’25) 
[crl.causalai.net]

http://fairness.causalai.net
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Task 1: COOL -- Cancer  
Dynamic Treatment Regime

• We test the survival model of the two-stage clinical trial conducted 
by the Cancer and Leukemia Group B. Protocol 8923 was a double-
blind, placebo controlled two-stage trial reported by (Stone et al. 
NEJM’95) examining the effects of infusions of granulocyte-
macrophage colony-stimulating factor (GM-CSF) after initial 
chemotherapy in patients with acute myelogenous leukemia (AML).   

• Standard chemotherapy could place patients at increased risk of 
death due to infection or bleeding-related complications. GM-CSF 
administered after chemo might assist patient recovery, thus 
reducing the number of deaths due to such complications.  

• Patients were randomized initially to GM-CSF or placebo following 
standard chemo. Later, patients meeting the remission criteria and 
consenting to further participation were offered a second 
randomization to one of two intensification treatments.

[crl.causalai.net]

http://fairness.causalai.net
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Task 1: COOL -- Cancer  
Dynamic Treatment Regime

S1 S2 Y

X1 X2

U

• X1, X2: treatment  
• S1, S2: state 
• Y: outcome  
• U: unobserved  

confounders

[crl.causalai.net]

http://fairness.causalai.net


CRL NEW CHALLENGES 
& OPPORTUNITIES (I)

Task 1 
 Causal Offline to Online Learning (COOL) 
 (generalized policy learning) 

Task 2 
 When and where to intervene?  
 (refining the policy space) 

Task 3 
 Counterfactual Decision-Making  
 (changing optimization function based on  
 intentionality, free will, and autonomy) 21

)

%

(NeurIPS’15, ICML’17, AAAI’19, CleaR’22) 

(NeurIPS’18, AAAI’19, NeurIPS’20)

(NeurIPS’19, ICML’20, NeurIPS’21, ICML’22, UAI’25) 
[crl.causalai.net]

http://fairness.causalai.net


CRL NEW CHALLENGES 
& OPPORTUNITIES (II)

Task 4 
Generalizability & robustness of causal claims 
(transportability & structural invariances)  

Task 5 
Learning causal model by combining 
observations (L1) and experiments (L2) 

Task 6                

 Causal Imitation Learning  

22

)

%

(PNAS’16, UAI’19, AAAI’20, NeurIPS’22, AAAI’24)  

(NeurIPS’17, ICML’18, NeurIPS’19, ’20, ’22,’23) 

(NeurIPS’20, ’21, ’24, ICLR’23)

[crl.causalai.net]

http://fairness.causalai.net


CRL NEW CHALLENGES 
& OPPORTUNITIES (III)

Task 7                

 Causally Aligned Curriculum Learning  

Task 8                

Automatic Reward Shaping from Offline 
(confounded) data 

23

)

%

(ICML’25)

[crl.causalai.net]

(ICLR’24)

http://fairness.causalai.net
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Example 2: Reward Shaping

• A robot is in a maze where 
the walls are made of lava,  
which is highly lethal!  

• The agent's movements are 
affected by the wind 
(indicated by blue marks in 
the plot), which it cannot 
perceive.  

• How can the agent escape 
the maze without getting 
hurt? 

• More broadly, how can we 
design a reward-shaping 
function that enables the 
agent to minimize online 
experimentation?

[crl.causalai.net]

http://fairness.causalai.net
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Example 2: Reward Shaping
[crl.causalai.net]

C
au

sa
l

Ba
se

lin
e

http://fairness.causalai.net


CRL NEW CHALLENGES 
& OPPORTUNITIES (III)

Task 7                

 Causally Aligned Curriculum Learning  

Task 8                

Automatic Reward Shaping from Offline 
(confounded) data 

Task 9 

Strategic (multi-agent) settings &  
 Causal Game Theory 

26

)

%

(ICML’25)

[crl.causalai.net]

(ICLR’24)

(TR-125)

http://fairness.causalai.net


Causal AI — Desiderata 

The new generation of AI systems is   
expected to provide the following capabilities: 

1. Causal Understanding & Explanations 
2. Efficient & Precise Decision-Making  
3. Generalizable & Robust Inferences 
4. Causal Generative Capabilities  
5. Model Learning & Discovery 
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Counterfactual Robustness

• Color , Digit , Image .


• Every digit has a different  
color, and saturation increases  
with the digit number. 


• A classifier outputs a  
prediction  given a  
colored image. 


• Why query: given a sample ,  
why did the classifier predict ?

X Y I

̂Y = ̂y

(x, y, i, ̂y)
̂Y = ̂y

X

I

Y

̂Y
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Counterfactual Robustness
Consider standard vs. robust (greyscale) classifiers .


 
 
 
 
A good explanation (answer to the why query) should be able to:


Task 1: Why the classifier predicted the digit the way it did.   
 An explanation should distinguish standard and robust classifiers. 


Task 2: Determine when variables (e.g., color  when digit ) 
have no effect on prediction .

̂Y

X Y = 0
̂Y

100%
99.4%

18.1%
99.4%

Training distribution

Standard
Robust

Shifted distributionTraining distribution Shifted distribution



Counterfactual Robustness
We compare the explanation methods: SHAP (L1, Lundberg 
et al., 2017)  and counterfactual Shapley values (L3, ours).  


30

Standard

Robust

https://dl.acm.org/doi/10.5555/3295222.3295230
https://dl.acm.org/doi/10.5555/3295222.3295230


Counterfactual Robustness
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et al., 2017)  and counterfactual Shapley values (L3, ours).  
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Counterfactual Robustness
We compare the explanation methods: SHAP (L1, Lundberg 
et al., 2017)  and counterfactual Shapley values (L3, ours).  


30

Standard

Robust Most of the mechanistic interpretability 
methods used in the literature today are 

oblivious to causality.

https://dl.acm.org/doi/10.5555/3295222.3295230
https://dl.acm.org/doi/10.5555/3295222.3295230


Causal AI — Desiderata 

The new generation of AI systems is   
expected to provide the following capabilities: 

1. Causal Understanding & Explanations 
2. Efficient & Precise Decision-Making  
3. Generalizable & Robust Inferences 
4. Causal Generative Capabilities  
5. Model Learning & Discovery 
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Example 1: Generative Modeling



• : color, 10d one-hot

• : digit, 10d one-hot

• : image, 

V = {C, D, I}
C
D
I ℝ32×32×3

D I

C

Graph 𝒢

Colored MNIST dataset  
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Example 1: Generative Modeling

D I

C

Graph 𝒢

Colored MNIST dataset  
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Conditional Query (L1)

Q = P(I | D=0) Color MNIST dataset  



• : color, 10d one-hot

• : digit, 10d one-hot

• : image, 

V = {C, D, I}
C
D
I ℝ32×32×3

Graph 𝒢
D I

C
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Interventional Query (L2)

Q = P(I | do(D=0)) Color MNIST dataset  



• : color, 10d one-hot

• : digit, 10d one-hot

• : image, 

V = {C, D, I}
C
D
I ℝ32×32×3

Graph 𝒢
D I

C
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Counterfactual Query (L3)

Q = P(ID=0 | D=5) Color MNIST dataset  



• : color, 10d one-hot

• : digit, 10d one-hot

• : image, 

V = {C, D, I}
C
D
I ℝ32×32×3

Graph 𝒢
D I

C



Example 2. Counterfactual Generation

37

• What would a person look like had they been … ?

Counterfactual Image Editing, Pan, Bareinboim, ICML-24.  
Counterfactual Image Editing with Disentangled Causal Latent Space, Pan, Bareinboim, 2025. 

37
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Example 2. Counterfactual Generation
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Gender
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Gray 
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37

Key fact. Sampling from the joint counterfactual distribution 
 is not identifiable in general.  

Main result. Develop counterfactually consistent estimators 
guaranteed to perform generation within bounds. 

P(I, Ix)



Causal AI Research Program

Develop more general & trustworthy AI systems 
endowed with the following capabilities: 

1. Causal Understanding & Explanations 
2. Efficient & Precise Decision-Making  
3. Generalizable & Robust Inferences 
4. Causal & Counterfactual Generation  
5. Model Learning & Discovery 

38

38



 http://causalai-book.net

39

See also:  
 http://llm-observatory.org

http://causalai-book.net
http://llm-observatory.org
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