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Recent Breakthroughs in Al

» Systems are able to perform extremely well in
making predictions in high-dimensional settings.

* In particular, there has been huge progress in
the fields of natural language processing,
computer vision, and reinforcement learning.

* Applications are everywhere, from medicine to
business, agriculture to space exploration.
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Does this mean we are done?
Wf@ (Assuming infinite compute & data.)

If not, what is missing?



Current Challenges in Al

 There are still serious foundational issues.
* Current Al systems suffer from:

1. Lack of explainability capabilities
2. Unfair & unethical decision-making
3. Data inefficiency

4. Poor generalizability

5. Lack of controllability

* Those are thorny, long-standing problems.
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e Al could pose ‘extinction-level’ threat to humans
and the US must intervene, State Dept.-
(M commissioned report warns

2. Unfair & unethical decision-making
3. Data inefficiency

4. Poor generalizability

5. Lack of controllability

* Those are thorny, long-standing problems.
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U5l risk that Al will wipe out humanity

D a | Inasurvey of 2,700 Al experts, a majority said there was an at least 5% chance that

superintelligent machines will destroy humanity. Plus, how medical Al fails when
P O ( assessing new patients and a system that can spot similarities in a person’s fingerprints.

Lack of controllabllity

* Those are thorny, long-standing problems.
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don't regulate Al, 'Godfather of Al' Yoshua
p Bengio says

superintelligent machines will destroy humanity. Plus, how medical Al fails when
P O ( assessing new patients and a system that can spot similarities in a person’s fingerprints.

Lack of controllabllity

* Those are thorny, long-standing problems.
* Do these problems have anything in common?

L

EB: At the core of these challenges is the f :
. absence of a robust causal understanding. ‘
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Towards a Science
of Artificial Intelligence



“What we want is a machine that can

learn from experience." ---Alan Turing, 1947

real world agent
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“What we want is a machine that can
learn from experience." ---Alan Turing, 1947

Pearl Causal Hierarchy

EB: unpacking OO 4 ‘
Turing’s ‘experiencie’: ' .§

see do imagine



Causal Model — Pearl Causal Hierarchy

[ Pearl & Mackenzie, 2018; Bareinboim, Correa, Ibeling, Icard 2022]

Level (Symbol) Typical Typical - I
eve mbo xamples
’ Activity Question P
Associational Seeing What is? What does a
P(y | x) ML - (Un)Supervised How would symptom tell us
OQ (Bayes Net, DTree, seeing X change about the
SVM, DNN, ...) my beliefinY?  disease?
Interventional Doing What if? What if | take
aspirin, will my
P(y | do(x), c) ML - Reinforcement What if | do X7
L (Causal Bayes Net, heada?che be
MDPs, POMDPs) cured?
3 Counterfactual Imagining,  Why? Was it the
irin that
P(yx | X, y’ Retrospection VWhatif | had aspirin
Q W Y) P acted differently? stopped my
headache?

—

Structural Causal Model



Causal Model — Pearl Causal Hierarchy

[ Pearl & Mackenzie, 2018; Bareinboim, Correa, Ibeling, Icard 2022]

Level (Symbol) Typical Typical . |
eve mbo xamples
i Activity Question ;
Associational Seeing What is? What does a
| X) ML - (Un)Supervised How would symptom tell us
P(y - about the
(Bayes Net, DTree, See€ing X change <! o
SVM, DNN, ...) my beliefiny?  disease’
Interventional Doing What if? What if | take

- Il my
P(y | do(x), ¢ ML - Reinforcement What if | do X? aspirin, wi
L 4 ). ©) (Causal Baves Net. headache be

The formalization of the PCH provides a

3 Counterfactua way to measure the capabilities
(yx | X, V) (expressiveness) of different formalisms
= w.r.t. increasingly complex queries

_—‘ ¢
-

(see also causal hierarchy theorem).



MOVING BEYOND TRADITIONAL ML

[ Pearl & Mackenzie, 2018; Bareinboim et al., 2022]

‘@, Cross-layer inferences:
/e
1 Input: Seeing most of the available data

'Y IS observational,
99 (data) passively collected

2 . . most of the inferences are
L Outp ut: Domg about causal effects
(query) (policies, treatments, decisions)

Research Question.
How to use the data collected from
observations (layer 1) to answer
questions about interventions (layer 2)?



Challenge: Causal Generative Models

PCH

Ly:P(V) L,: P(V|do(x)) Ly:P(Vy]|X)

Observations Interventions Counterfactuals
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Challenge: Causal Generative Models

Training =
Use Li-data
to learn m

PCH

L, : P(V) L,:P(V]|dox)) Ly:P(Vy|x) Unobserved

Observations Interventions Counterfactuals

HOd

Ly :P(V) L,:P(V|do(x)) L;y: P(V,|Xx)

10



Cha”E Fundamental problem of generative Al.

Under what conditions inferences in M (r.h.s.)
are valid, i.e., when do they recover the

distributions induced by the true M* (I.h.s.)?

Causal
Model . *

Training =
Use Li-data
to learn

HOd

L : P(V) L,:P(V|do(x)) Ly:P(Vy|x) Unobserved Ly :P(V) L,: P(V|do(x)) Ly: P(V,|x)

Observations Interventions Counterfactuals 10
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Causal Artificial Intelligence

Goal: Develop more general Al systems
endowed with the following capabilities:
1. Causal Understanding & Explanations
2. Efficient & Precise Decision-Making
3. Generalizable & Robust Inferences
4. Causal & Counterfactual Generation
5. Model Learning & Discovery
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Example 1: US Census 2018

[fairness.causalai.net]

Age, Nationality - The data science team observes that
Z TV = E[Y | male] — E[Y | female]

This disparity could be explained in
different ways, i.e.,

Gender SEIEY, (1) The salary decision is based on
employee’ gender: X — Y.
X )4 N .
(2) Decisions were based on education or
v.” employment: X — W — V.
/4 (3) Age or nationality are used to infer the
Education, Employment person’s gender: X <> Z — Y.

After a legal argument, the jury may be okay with Y’s variations due
to , but not okay with the variations due to or

How to disentangle the variations within TV? 12
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US Census 2018
— Causal Analysis

[fairness.causalai.net]

« Observed Disparity (data):
« TVxo, x1(y) = $14,000/year

TVy, x,(y) decomposed for Census dataset

Age, Nationality

Z
K
Gender . Salary
>

X \ / Y

\4

1% R &
Educatlon, Employment Causal Faimess Measure

13
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US Census 2018
— Causal Analysis

[fairness.causalai.net]

« Observed Disparity (data):
« TVxo, x1(y) = $14,000/year

TVy,, X1(y) decomposed for Census dataset

Age, Nationality

z
/1
Gender " Salary
X Y
\ 4
W

Education, Employment
TV cannot distinguish causally
different explanations! (K!


http://fairness.causalai.net

Example 2: College Admissions

« A university in the US admits applicants every year. The data science
team is tasked with quantifying discrimination in the admission process
and tracking it over time, between 2010 and 2020. The data-generating
process changes over time and can be described as follows.

Let X denote gender (x, female, x; male). Let Z be the age at the time of
application (Z = 0 under 20 years, Z = 1 over 20 years), and let W
denote the department of application (W = O for arts & humanities,

W =1 for sciences). Finally, let Y denote the admission decision.

SCM M= (%,P(U))
X « 1(Uy < 0.5+ 0.1Uy,)
Z < 1(U; < 0.5+ k()Uy,) k(t+ 1) = 0.9«()
W <« 1(Uy, < 0.5 + A(H)X) Mt + 1) =201 — (@)

Y « 1(Uy < 0.1 + a(®dX + B(OW + 0.1Z) p+ 1 =pod - A0 @),
£(#) ~ Unif[0.8,1.2]
a(t+ 1) =0.8a(r)

Time Evolution 6,_,_,

Ux, Uz, Uw, UY (~ Unif[o,l] -




Bias Quantification over time

Bias Quantification Over Time - College Admissions

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Year

Quantity — Estimated (from sample) ---- True (population) Effect Direct —e— Indirect Spurious




Causal Al — Desiderata

The new generation of Al systems is
expected to provide the following capabillities:

1. Causal Understanding & Explanations

2. Efficient & Precise Decision-Making

3. Generalizable & Robust Inferences
4. Causal Generative Capabillities
5. Model Learning & Discovery

16



Causal RL - Big Picture

©

a‘lo S
1o =

<
Agent

‘action’

0, G

\_

Causal Diagram

T

/ . \
J e

[crl.causalai.net]

context / state

<> @

Environment
M

Y

Structural Causal Model

observational, interventional, counterfactual

17
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Causal Diagram Structural Causal Model

observational, interventional, counterfactual
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CRL NEW CHALLENGES
& OPPORTUNITIES (1)

[crl.causalai.net]

Task 1 (NeurlPS'19, ICML'20, NeurlPS21, ICML'22, UAI25) ]'

Causal Offline to Online Learning (COOL)

(generalized policy learning)

18
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Task 1: COOL -- Cancer
Dynamic Treatment Regime

[crl.causalai.net]

- We test the survival model of the two-stage clinical trial conducted

by the Cancer and Leukemia Group B. Protocol 8923 was a double-
blind, placebo controlled two-stage trial reported by (Stone et al.
NEJM’95) examining the effects of infusions of granulocyte-
macrophage colony-stimulating factor (GM-CSF) after initial
chemotherapy in patients with acute myelogenous leukemia (AML).

- Standard chemotherapy could place patients at increased risk of

death due to infection or bleeding-related complications. GM-CSF
administered after chemo might assist patient recovery, thus
reducing the number of deaths due to such complications.

- Patients were randomized initially to GM-CSF or placebo following

standard chemo. Later, patients meeting the remission criteria and
consenting to further participation were offered a second
randomization to one of two intensification treatments.

19
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Task 1: COOL -- Cancer
Dynamic Treatment Regime

[crl.causalai.net]

« X1, X2: treatment
¢ S1, So: state
* Y: outcome

Cum. Regret

*rand
<uc-dtr

 U: unobserved Episodes
confounders

20
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CRL NEW CHALLENGES
& OPPORTUNITIES (1)

[crl.causalai.net]

Task 1 (NeurlPS'19, ICML'20, NeurlPS'21, ICML22, UAI25) ]'

Causal Offline to Online Learning (COOL)

(generalized policy learning)

|

Task 2 (NeurlPS'18, AAAI'19, NeurlPS'20) }
When and where to intervene?
(refining the policy space)

—

Task 3 MNeurlPps'1s, IcML'17, AAAI9, CleaR'22)

Counterfactual Decision-Making

(changing optimization function based on
intentionality, free will, and autonomy)

21
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CRL NEW CHALLENGES
& OPPORTUNITIES (I1)

[crl.causalai.net]

TaSk 4 (PNAS’16, UAI'19, AAAI'20, NeurIPS’22,AAAI’24);1

Generalizability & robustness of causal claims
(transportability & structural invariances)

Learning causal model by combining
observations (L1) and experiments (L2)

Task 6 (NeurlPS’20, 21, 24, ICLR’23) \
Causal Imitation Learning

22
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CRL NEW CHALLENGES
& OPPORTUNITIES (III)

[crl.causalai.net]

Task 7 ICLR24>
Causally Allgned Curriculum Learning

Task 8 «cuzs)
Automatic Reward Shaping from Offline
(confounded) data

23
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Example 2: Reward Shaping

[crl.causalai.net]

A robot is in a maze where
the walls are made of lava,
which is highly lethal!

The agent's movements are
affected by the wind
(indicated by blue marks in
the plot), which it cannot
perceive.

How can the agent escape
the maze without getting
hurt?

More broadly, how can we
design a reward-shaping
function that enables the
agent to minimize online
experimentation? 2z
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Baseline

Causal

Example 2: Reward Shaping

[crl.causalai.net]

25
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CRL NEW CHALLENGES
& OPPORTUNITIES (III)

[crl.causalai.net]

Task 7 ICLR24>
Causally Allgned Curriculum Learning

Task 8 «cuzs)
Automatic Reward Shaping from Offline
(confounded) data

Task 9 (TR-125)
Strateglc (multi-agent) settings &
Causal Game Theory

26
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Causal Al — Desiderata

The new generation of Al systems is
expected to provide the following capabilities:

1. Causal Understanding & Explanations
2. Efficient & Precise Decision-Making
4. Causal Generative Capabillities

5. Model Learning & Discovery

27



Counterfactual Robustness

o

. - | X3 ¥
Color X, Digit ¥, Image 1. 0] 230 5

e Every digit has a different
color, and saturation increases
with the digit number.

e A classifier outputs a
prediction Y = y given a
colored image.

* Why query: given a sample (x, y, 1, V),
why did the classifier predict ¥ = y?

g o

vi
L 9

£ O

28



Counterfactual Robustness

Consider standard vs. robust (greyscale) classifiers Y.

Training distribution Shifted distribution
O | 23y v b7 @\N23 445674
O] 349 5 (9 g g1 A3 L 6 ) 2 4
Standard
Robust

A good explanation (answer to the why query) should be able to:

Task 1: Why the classifier predicted the digit the way it did.
An explanation should distinguish standard and robust classifiers.

Task 2: Determine when variables (e.g., color X when digit ¥ = 0)
have no effect on prediction Y.

29



Counterfactual Robustness

We compare the explanation methods: SHAP (L1, Lundberg
et al., 2017) and counterfactual Shapley values (L3, ours).

L3 (ours)

Standard

Robust

30
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Counterfactual Robustness

We compare the explanation methods: SHAP (L1, Lundberg

et al., 2017) and counterfactual Shapley values (L3, ours).

Standard

Robust
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Counterfactual Robustness

We compare the explanation methods: SHAP (L1, Lundberg
et al., 2017) and counterfactual Shapley values (L3, ours).

Standard

Most of the mechanistic interpretability
methods used in the literature today are
oblivious to causality.

Robust

30


https://dl.acm.org/doi/10.5555/3295222.3295230
https://dl.acm.org/doi/10.5555/3295222.3295230

Causal Al — Desiderata

The new generation of Al systems is
expected to provide the following capabilities:

1. Causal Understanding & Explanations
2. Efficient & Precise Decision-Making
3. Generalizable & Robust Inferences

4. Causal Generative Capabillities

5. Model Learning & Discovery
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Example 1. Generative Modeling

Colored MNIST dataset V ={C,D,I}

C: color, 10d one-hot
D: digit, 10d one-hot
I: image, R332

32



Example 1. Generative Modeling

Colored MNIST dataset 5 O 7 9




Conditional Query (L1)

Q = P(l | D=0)
T J a
: ©
(»)
Graph &
R = ]



Interventional Query (L2)

f o d
Q = P(l | do(D=0)) 0D O

. 00020
. o000
: 4 000
@ QopPoe
PO

Graph & 2 50
I = |
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Counterfactual Query (L3)
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Example 2. Counterfactual Generation

- What would a person look like had they been ... ?

Counterfactual Image Editing, Pan, Bareinboim, ICML-24.

Counterfactual Image Editing with Disentangled Causal Latent Space, Pan, Bareinboim, 2025.
37



Example 2. Counterfactual Generation

- What would a person look like had they been ... ?

Change Age Change Gender Change Grayhair ‘

o
)
3
3}

Q
c
[}

pd

Counterfactual Image Editing, Pan, Bareinboim, ICML-24.

Counterfactual Image Editing with Disentangled Causal Latent Space, Pan, Bareinboim, 2025.
37



Example 2. Counterfactual Generation

- What would a person look like had they been ... ?

Change Age Change Gender ‘ Change Grayhair ‘

=
7}
=]
)
Q
c
(®)
Z

Gender is not preserved;

GrayHair does not change; Age and GrayHair is not preserved

Gender and Age is not preserved

Counterfactual Image Editing, Pan, Bareinboim, ICML-24.

Counterfactual Image Editing with Disentangled Causal Latent Space, Pan, Bareinboim, 2025.
37
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Example 2. Counterfactual Generation |}

Gray °
Hair

- What would a person look like had they been ... ?

Change Age Change Gender ‘ Change Grayhair ‘

=
7}
=]
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Q
c
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Z

Gender is not preserved;

GrayHair does not change; Age and GrayHair is not preserved

Gender and Age is not preserved

Counterfactual Image Editing, Pan, Bareinboim, ICML-24.

Counterfactual Image Editing with Disentangled Causal Latent Space, Pan, Bareinboim, 2025.
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Example 2. Counterfactual Generation .,

Gray °
Hair

- What would a person look like had they been ... ?

Change Age Change Gender ‘ Change Grayhair ‘

L

Non-Causal

Gender is not preserved;
GrayHair does not change;

Gender is preserved;

GrayHair possibly changes Age and GrayHair is preserved Gender and Age is preserved

Counterfactual Image Editing, Pan, Bareinboim, ICML-24.

Counterfactual Image Editing with Disentangled Causal Latent Space, Pan, Bareinboim, 2025.
37
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Example 2. Counterfactual Generation .

Gray ®

- What would a person look like had they been ... ? ™

Change Age Change Gender ‘ Change Grayhair ‘

s a\

Gender is not pre=-=:~-
GrayHair does noi

=
7}
=]
)
Q
c
(®)
Z

Gender is pres ‘
GrayHair possibly

Counterfactual Image EQl |ng an Sareinooim, v‘
Counterfactual Image Editing with Disentangled Causal Latent Space, Pan, Bareinboim, 2025.
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CLS (ours)

-
-

DDPM Inversion

Initial Image




Gender **'

Initial Image DDPM Inversion

S . ‘ o - ‘:-
"“5{'; D .

AR
|

N »
T

e IS 3

gy L

o

. Key fact. Sampling from the joint counterfactual distribution
P(l, L) is not identifiable in general.

Main result. Develop counterfactually consistent estimators
guaranteed to perform generation within bounds.

=
0
=
©
Q
c
(*}
pd




Causal Al Research Program

Develop more general & trustworthy Al systems
endowed with the following capabillities:

1. Causal Understanding & Explanations

2. Efficient & Precise Decision-Making

3. Generalizable & Robust Inferences

4. Causal & Counterfactual Generation

5. Model Learning & Discovery

38
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